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Allstract-In the creep literature, the term "skeletal point" is often used to denote a point in a
creeping body at which the stress is independent of time. It is shown for a class of stress
redistribution problems involving one space dimension, both for secondary creep and strain­
hardening primary creep, that such points do not exist. Also, for a one-dimensional continuum
of bars whose configuration depends on a shape function I(x), we show that, ifI takes more than
two distinct values, the relaxation times cannot be the same for all bars. However, if I takes at
most two distinct values, the relaxation times will always be the same. This result assumes powerlaw
secondary creep.

I. INTRODUCTION

A characteristic feature of many problems involving creeping metal structures subject to
time-independent loads is the gradual redistribution of stresses from an initial elastic to
an ultimate creep profile. This is generally modelled by representing the total strain as the
sum of an elastic strain, which depends linearly on stresses, and an initially zero nonlinear
creep strain. This paper presents results concerning two specific aspects of the redis­
tribution phenomenon: skeletal points and the relaxation time.

Let s(r, t) denote a one-dimensional stress profile (e.g. effective stress through the wall
of a pressure vessel) for a ~, ~ b at time t. In general, if one plots the initial elastic stress
s(',O) (solid line) and the steady-state creep stress s(', r::J:)) (dotted line) on the same graph,
patterns like those of Fig. I result. The point of cross-over, which occurs at , =C, was
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named the "skeletal point" by Marriott and Leckie in a 1964 paper ([ I]. p. 119). Profiles
s(r, t) for 0 < t < 00 lie roughly between s(r, 0) and s(r, (0) and appear to intersect one
another at points very near to the skeletal point (see, e.g. Fig. 17.6d of[I]). In a 1970 paper
([2], pp. 146--148), Marriott described as an "engineering" assumption the hypothesis that
the stress remains constant at the skeletal point for all time.

It appears that in later discussions of points of constant stress, the approximate nature
of this phenomenon was overlooked. For example, in 1978, Goodman and Goodall [3]
described the skeletal point as a position "where the stress level is insensitive to variation
in the creep index n". Also, a 1980 textbook claimed that in [1], Marriott and Leckie had
observed points in components undergoing transient creep "at which the stress does not
change with time" ([4], p. 82).

In Section 2, we set up the equations on which our secondary creep work is based. Our
first main result, established in Section 3, asserts that, for a large class of one dimensional
stress distributions, skeletal points in the sense of the later authors. i.e. points at which
the stress remains constant for all time, do not exist. We prove this both for power law
secondary creep and strain-hardening primary creep. For the latter case, we develop a
generalized primary creep equation analogous to (2.4) below.

Despite its nonexistence, the skeletal point remains a useful concept in making simple
estimates of the creep behavior of various structural elements during the transition from
initial to final steady state. It is beyond the scope of this paper to consider the magnitude
of the error resulting from using the skeletal point concept in design calculations.

The relaxation time t(r) estimates the time required for the stress at point r to realize
its limiting value s(r, 00). Figure 2 motivates the definitiont (see [5.6])

s(r, oc) - s(r, 0)
t(r)== 5(r,0) ,(a5,r5,b). (1.1 )

We are concerned here with relaxation times in a one dimensional continuum consisting
of an infinite number of infinitely thin vertical bars which occupy the unshaded portion
of Fig. 3. L(x) is the initial length of the bar at position x. Its reciprocal f(x) == L - '(x)
is called the shape function. A question which arises naturally in the design of such a
structure under creep conditions is whether a nonconstant shape function f(x) exists such
that all of the bars relax with the same relaxation time, i.e. such that t(x) == constant.

In Section 4, it is shown that if t (x) is identically constant, then f(x) cannot take three
distinct values. Our proof, which holds for power law secondary creep. does not require
any assumptions as to the smoothness off It is also shown that iff is any integrable step
function which takes two distinct values, then t (x) is identically constant.

S (r, t J
Slope S( r,Ol

T (r)

t
Fig. 2.

tThe superposed dot stands for a time derivative.
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2. SECONDARY CREEP EQUATIONS

As shown in [7) transient creep states in a number of different components can be
derived from the following non-linear integral equation

s(r, t) = ~ (N + Jotf H(s)q(O d~ dr) - LH(s) dr

where 0 :$ r :$ b, t ~ 0 and

/ =rfq(,)d~ (q > 0 on (0, b».

(2.1 )

(2.2)

Here s(r, t) represents a stress distribution, N(t) an applied load and H a creep function,
whereas q and 1depend on the geometry of the component.

Equation (2.1) governs, as special cases, such problems as the torsion of a circular
cylinder under moment M, taking

(I + v)
s=--E-(16.. 1=1, (~)=~2 N=(I+v)M

q .. .., 21tE'

and the pure bending of a symmetric beam(7), where

(1zz
s=­

E'
M

1= I, N = - E' 0 = 0, b = c, M <0.

Here, q(O is a positive integrable function depending on the shape of the beam's
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cross-section. Equation (2.1) also covers cylindrical (I = - 2) and spherical (I == - 3)

pressure vessels, in which case it becomes (2.36) of [8], and N is proportional to the internal
pressure.

It is clear in all cases that s is proportional to stress and that N is a known quantity
related to the applied load. In the problems discussed below, N is a positive constant. With
suitable assumptions on the creep function H, one can then prove that s must be positive.
In the present work, we shall generalize by replacing r' by the positive, piecewise
continuous nonconstant function f(r) and specialize by takingt

H(s) = Ks", (K > 0, n > I).

Equations (2.1) and (2.2) now become

f(r)N r' (f(r) fb )s(r,t)=-/-+K Jo / a s"(e,r)q(Ode -s"(r,r) dr,

Setting I = 0, we get the initial elastic stress

j(r)N
s(r 0)=--, /'

(2.3)

(2.4 )

(2.5)

(2.6)

It is easy to see that for n = I, s(r, I) takes the value (2.6) for all t > °The steady-state
creep profile s(r, (0) can be obtained as follows, see [8]. Differentiation of equation (2.4)
with respect to time yields

. f(r)N (f(r) fb - )s(r,t)=-/-+K / a s"(e,t)q(~)de -s"(r,t) .

With i(r, (0) = 0 and N = °follows

fer) fb
s"(r,oo)=/ a s"(e,oo)q(Ode

and hence

s(r, os) = ClI"(r)

(2.7)

(2.8)

(2.9)

with C a constant, which may be detennined as shown in [8], p. 273. The resultant
steady-state profile is

(2.10)

The proof of nonexistence of skeletal points for secondary creep will be based on (2.4).
For the continuous distribution of bars shown in Fig. 3, the tensile stress a(x. t) and

strain leX, t) satisfy

fob a(x, t)h d.x = F (equilibrium), (2.11 )

tFor more general loading histories N(t), under which s could take positive or negative values. (2.3) would
be replaced by H(s) = Klsln- IS.



On stress redistribution in structures during creep

leX, I) = a(t) = a(/}f(x) (compatibility)
L(x)

and the creep law

with

E > 0, B > 0, n > I.

In this notation, the relaxation time becomes

)=u(x, 00) - u(x, 0) (0 < < b).
'rex u(x, 0) - x -

919

(2.12)

(2.13)

(2.14)

(2.15)

Equations (2.11 H2.13) immediately imply an equation in u of the form (2.4). In fact,
substitution of (2.13) into (2.12) yields

a(t}f(x) = E-1u(x, I) + B f: un(x, r)dr.

If we then integrate (2.15) with respect to x from 0 to b and apply (2.11), we get

a(t) =~ (~ + B t fob un d~ dr),

I = fob1(0 d~.

Substitution of (2. 16) into (2.15) furnishes the desired equation

l(x)F f'(!(x) fb )
u(x,/)=----n;-+EB Jo -/-Jo un(~,r)d~-un(x,r) dr,

(2.16)

(2.17)

(2.18)

which clearly is included in (2.4). Thus, our result on nonexistence of skeletal points also
holds for the continuum of bars. Furthermore, it is easily seen that for suitably chosen
I(x), the results of [7] on upper and lower sequences of approximations can be extended
to this problem.

3. NONEXISTENCE OF SKELETAL POINTS

Suppose at least one skeletal point exists for some c in the interval [a, bJ, i.e.

s(c, I) == constant for all 1 ~ O.

Then, equating (2.6) and (2.7) for r = c, we get

On the other hand, one time differentiation of (2.4) yields

(3.1)

(3.2)
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(3.3)

Now let r = c. Then, since s(c, t) = 0,

I(c)= ~ Is"(c,t) .

fa s"(~. t)q(O d~

Since this equation holds for all t, we can, in particular, set t = 0 and then substitute (2.6)
into it. The result is

ff"q d~
f"-I(C) ==-,a~h--

fa Iq d~

Eliminating f" - I(C) between (3.2) and (3.4), we get

I
~ [Ih JI/(n+ I) [I~· In/<n+ I)Iq d~ = f"q d~ . p1nq d~ .

a a a

With

f" = f>1+I. II In = ,,"+II;n
-.II' -.12 '

so that

(3.5) becomes

(3.4)

(3.5)

(3.6)

(3.7)

Holder's inequality with weight function q states[9] that, for sufficiently smooth
functions II' I2'

(3.8)

for any PI> I, P2 > I such that Ilpl + IIp2 = I. Moreover, equality holds only if there exists
a nonzero constant A. such that

Applying this to the positive functions iI, h defined by (3.6) with PI = n + 1 and
P2 = (n + 1)In, we see that (3.7) implies

f"(r) -:dp./"(r) in [a, b].

Since for n > I, this contradicts the condition that I be nonconstant, the nonexistence of
skeletal points is thus established. Recall that for such problems as the pure bending of
beams, torsion of circular cylinders, etc. I(r) had the form r l where I is a non-zero constant.
For the continuum of bars, a nonconstant shape function I(x) was assumed, since for I
constant, a degenerate case results.

We now consider the extension of this result to bodies undergoing strain-hardening
creep according to the creep law

,..<C)! - 0
Lij 1=0- (3.9)
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of Odqvist and Hult[lO]. Here (fe' f./c
) stand for the effective stress and the effective creep

strain respectively and sij for the deviatoric components of the stress. It has been shown [7]
that primary creep both in circular bars undergoing torsion and symmetric beams subject
to pure bending is governed by the equation (compare (2.8) of [7] and subsequent remarks)

rN rBf6[i l
JII(m+1l [I' JI!(m+1l

(I =1 +/ a"dr q(~)d~ - B (lndr .
1I 0 0

(3.10)

The constant B depends on which case is being considered, as does the interpretation of
(f.

Also, in [11] it was shown that, with the same strain-hardening law, primary creep in
internally loaded symmetric pressure vessels reduces to the equation

r-iN r-iBfb[rr ]11(m+l)d~ [rl ]1!(m+ll
(f =-/- + -/- .a Jr) (I" dr T - B Jo (I" dr (0 < a < b). (3.11)

In fact, this is just (2.34) of [11] with the notation modified in an obvious way. Both (3.10)
and (3.11) are contained in

f(r)N f(r)Bf6[ft ]ll(m+ll [it ]IJ(m+lJs(r, t) =-/- +-/- sIt dr q(~) d~ - B s" dr ,
a 0 0

We assume that N is a positive constant, that

q"»O(a<~<b), n>l, m+l<n, B>O

(3.12)

(3.13)

aDdfis positive and Donconstant. Also it must be assumed that s is positive and continuous
in [a,b] x [0, (0). It follows from (3.12) that

s(r, 0) =f(r]N (3.14)

as in the case of secondary creep. As 1-00, one can formally deduce from (3.12), using
the technique of Section 4 of [11] that

Nf I2(r) ns(r, (0) = fb ' IX =--> 1.
a fI2(~)q(~) d~ m + 1

(3.15)

Again, suppose that a skeletal point exists at r = c. Then, since s(c, 0) = s(c, 00), (3.14)
and (3.15) imply

(3.16)

in analogy to (3.2). For the derivation of the primary creep analogue of (3.4) we again
differentiate the basic integral equation, in this case (3.12), with respect to time at r == c
to get

I(C)fb[fl JI-m/(m+lll [f t ]I-m!(m+l l]

T a Jo Sndt s"(~,l)q(~)d~= JoS"(c,T)dr s"(c,t). (3.17)
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r t 1
t~ (t - s"(r, 0)'

Jos"(r,r)dr

we find, upon multiplying both sides of (3.17) by tm!(m + I) and taking the limit as t -+0 that

f(c) fb
-/- a s·(e, O)q(O d~ = s·(c, 0).

This has the same form as (3.3) with t =0 and n replaced by a. The rest of the argument
is the same as for the secondary creep case.

4. SHAPE FUNCTIONS AND RELAXATION TIMES

In order to compute the relaxation time r(x) at fiber x from (2.12), we use (2.15), (2.16)
to obtain

f(x)F (b
a(x, 0) = ----n;-' 1= Jo f(O de,

ci(x, 0) = EB (~yf(;) fob /"(0 de - f"(X»).

(4.1 )

(4.2)

Comparing (2.16) with (2.4), we see that, for the continuum of bars, (2.7) becomes

a(x,oo)= fb .
h 0 l!"(Od~

Substitution of (4.1)-(4.3) into (2.12) now yields

F"(x) f(x)

ff
l!" dJ' I

(Ffh)l-"I" ..
rex) = .~----:-~

EB (ff" de) f(x) _ /"(x)

/ f/"de

(4.3)

(4.4)

Suppose r(x) is identically constant on [0, b], and let there exist points Xt. X2, X 3 in [0, b]
(in any order) with f(x j ) == Cj (i = 1,2, 3) such that Cj:f: cj for i :f: j, min Cj > O. The latter
follows from the assumption that f> 0 on [a, b]. Then, if (4.4) is evaluated at the three
points XI' X2' x3, we get

where A. is independent of i. That is,

(4.5)
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Obviously, (4.5) has the form
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(4.6)

Since lal + 1111 + 111 > O. the determinant i.\ of the 3 by 3 linear system (4.6) must equal zero.
But

i.\=

CII/O

C2
1/0

C31/0

CI Cl
o

e2 ct = [C IC2C3]1/"

C3 c3"

CI(O -1)/"

Cl(o-Il/O

C3(n-I)/"

[CI(n-I)/"]n+ I

[C2(0-1)/"]0+ I

[C3(0 -I)/"r + I

Let ai =C/"-I)/o. Then for n > I, ai ,* aj for i '* j, and

Recall that (see, e.g. [12], p. 338) three points (XI> YI)' (X2' Y2) and (x3, Y3) can lie on a straight
line if and only if

XI YI

X 2 Y2 =O.
X3 Y3

But, for n > I, the three points (a;, a,o + I) cannot lie on a straight line due to the strict
convexity of the function Y = x n + I. We have thus proved that iff (x) is identically constant
on [a, b], then f(x) cannot take three distinct values.

Now suppose that f is an integrable function which takes two distinct values, say CI

and C2' on [a, b]. Let bi be the measure of the subset of[O, b] on whichf = Ci' Iffis a classical
step function, then bi is simply the sum of the lengths of the intervals on which f = c;. Let

ClIO CiI

Irod~ -Ifd~
ci/n C;I

(i = 1,2) = biCII/n + b2C21/n bici + b2C2
Qi=

c'Ci I Ci c'If d~ - If' d~ ,
(4.7)

bici + b2C2 blcl" + b2c{

Let f; be the value taken by f at those points X at which f(x) = C;. In order to prove
f identically constant as asserted in Section I, suffices to show that f l = f2' A glance at
(4.4) tells us that this will follow once it is seen that QI = Q2' But, by (4.7),

CONCLUSION

Detailed studies of the stress redistribution, which occurs due to nonlinear creep in
structure elements subject to time independent loads, have shown that certain common
features exist. One of these is the existence of a small region within the structure, where
the stress level remains nearly constant throughout the redistribution process. Various
authors have postulated the existence of a point, where the stress is constant, and termed
this the "skeletal point". It has been shown in the present paper that, for a wide class of



924 W. S. EDELSTEIN and J. HULT

structural elements of engineering interest, such points do not exist. Hence design methods
based on the concept of a skeletal point are only approximate methods. No attempt has
been made here to estimate the accuracy obtainable in using skeletal point methods.

For the related problem of determining the relaxation times in an array of parallel bars
of varying length it has been shown that the relaxation time cannot be equal for all bars
except for the trivial case of two sets of bars, all the bars in each set having the same length,
when equality always holds.
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